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Abstract

Current large vision-language models (VLMs) often encounter challenges such as
insufficient capabilities of a single visual component and excessively long visual
tokens. These issues can limit the model’s effectiveness in accurately interpreting
complex visual information and over-lengthy contextual information. Addressing
these challenges is crucial for enhancing the performance and applicability of
VLMs. This paper proposes the use of ensemble experts technique to synergizes
the capabilities of individual visual encoders, including those skilled in image-text
matching, OCR, image segmentation, etc. This technique introduces a fusion
network to unify the processing of outputs from different visual experts, while
bridging the gap between image encoders and pre-trained LLMs. In addition, we
explore different positional encoding schemes to alleviate the waste of positional
encoding caused by lengthy image feature sequences, effectively addressing the
issue of position overflow and length limitations. For instance, in our implemen-
tation, this technique significantly reduces the positional occupancy in models
like SAM, from a substantial 4096 to a more efficient and manageable 64 or even
down to 1. Experimental results demonstrate that VLMs with multiple experts
exhibit consistently superior performance over isolated visual encoders and mark a
significant performance boost as more experts are integrated.
We have open-sourced the training code used in this report. All of these resources
can be found on our project website1.

1 Introduction

Current large vision-language models (VLMs) demonstrate significant potential in tasks requiring
joint visual and linguistic perception, such as image captioning [1], visual question answering [2],
visual grounding [3], and autonomous agents [4, 5]. VLMs harness large language models (LLMs) as
cognitive foundation models to empower various vision-related tasks, while one vision component,
such as CLIP [6], typically serves as auxiliary modules that provide additional visual perception
[7]. However, the perception abilities of the individual vision models still lag behind, even in simple
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Figure 1: Left: Comparing InstructBLIP, Qwen-VL-Chat, and LLaVA-1.5-7B, poly-visual-expert
MouSi achieves SoTA on a broad range of nine benchmarks. Right: Performances of the best models
with different numbers of experts on nine benchmark datasets. Overall, triple experts are better than
double experts, who in turn are better than a single expert.

tasks like counting. [8–10]. This gap highlights a significant limitation in these models’ capacity to
process and understand visual information as effectively as they handle linguistic data. According
to the operation of the vertebrate visual system, with each functional unit encoding different visual
aspects in parallel, retinal ganglion cells transmit distinct features to the brain [11]. This biological
mechanism suggests a model structure where the varied visual information should be parallelly
encoded by diverse perception channels.

To this end, the community has verified that each model, with its unique approach to vision processing,
contributes differently to understanding visual content [12]. CLIP, with its contrastive learning ap-
proach, excels in aligning images with textual descriptions, providing a robust semantic understanding
[6]. DINOv2, through its self-supervised learning paradigm at both the image level and patch level,
offers significant advances in robust and stabilized feature extraction without relying on labeled
data [13]. LayoutLMv3’s specialization in document AI tasks demonstrates the power of visual text
processing [14]. [15] empirically investigated different visual tokenizers pre-trained with dominant
methods (i.e., DeiT [16], CLIP, MAE [17], Dino [18]), and observed that CLIP could capture more
semantics, whereas the other models excelled at fine-grained perception. However, on the multimodal
leaderboard organized by OpenCompass2, the visual encoders of all open-source VLMs are based
on the pre-trained CLIP encoder family. Many researchers have pointed out the shortcomings of
the CLIP encoder, such as the inability to reliably capture even basic spatial factors of images [19],
suffering from object hallucination [20], and so on. In light of the distinct capabilities and limitations
of these diverse vision models, a key question emerges: How can we incorporate the strengths of
multiple visual experts so that they work in synergy to improve overall performance?

Drawing inspiration from biology, we take on the poly-visual-expert perspective and design a
novel model, similar to how the vertebrate visual system operates. Consequently, in the process of
developing VLMs with poly-visual experts, three problems are in major concern: (1) whether the
poly-visual experts are effective; (2) how to better integrate multiple experts; and (3) how to avoid
exceeding the LLM’s maximum length with multiple visual experts?

In order to verify whether multiple visual experts are effective for VLMs, we construct a candidate
pool consisting of six well-known experts, including CLIP, DINOv2, LayoutLMv3, Convnext [21],
SAM, and MAE. Using LLaVA-1.5 as the base setup, we explored single-expert, double-expert
combinations, and triple-expert combinations in eleven benchmarks. The results, as shown in Figure 1,
indicate that as the number of visual experts increases, the VLMs acquire richer visual information
(due to more visual channels), and the upper limit of the multimodal capability improves across the
board.

2 https://rank.opencompass.org.cn/leaderboard-multimodal
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Figure 2: An overview of the MouSi model structure. The poly-vision-expert MouSi model supports
the integration of visual experts with various types and capabilities.

In existing single visual channel VLMs, the methods for transmitting visual signals are either the
MLP projection network [22, 23] or the Q-Former network [24, 25]. To accommodate multi-channel
signal transmission from multiple experts, we modified both methods for poly-expert fusion networks
separately. The proposed method also compresses the local visual information by multi-patch-one-
token for better transmission efficiency and reduces the quadratic computational cost of subsequent
processing of VLMs.

In position-aware VLMs, vision tokens consume a staggering amount of positional embeddings.
Taking a single-turn multimodal dialogue in VQA as an example, with the MAE expert, the number of
vision tokens (about 4096) is more than 500 times higher than the number of text tokens (about 8.7).
Inspired by the fact that visual experts already have positional encodings, we believe it is redundant
to again assign a VLM position embedding to each visual token individually. Therefore, we explore
different positional encoding schemes to effectively address the issue of position encoding waste. The
results show that the two schemes: sharing one position for all patches and 2D positional encoding
(rows plus columns) are able to reduce the position consumption (in the case of CLIP, the PE used
drops from 576 to 24 or even 1), while the performance is still comparable.

Our contributions can be summarized as follows:

• We introduce a poly-visual-expert VLM that synergistically combines the strengths of various
visual encoders to improve the overall capabilities of VLMs.

• We tackle the challenge of vision token overflow in VLMs by proposing multi-patch-single-token
projection and efficient positional encoding solutions.

• By experimenting with different combinations of experts, our results demonstrate enhanced perfor-
mance (+1.53 with fair comparison) in multimodal tasks.

2 Architecture

2.1 The Overview

When a user uploads an image of wind pollination in a conical inflorescence and asks “Which cones
make pollen?” the image is processed in sequence through the encodings of the CLIP expert, the SAM
expert, and the LayoutLM expert, yielding three sets of visual representations. Subsequently, a poly-
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Expert Res. Param. d_hid #Patch Type Pre-training
Tasks Images

CLIP 336 300M 1024 576 ViT Image-Text Matching 400M
DINOv2 224 1.1B 1536 256 ViT DINO+iBOT+SwAV 142M
LayoutLMv3 224 368M 1024 196 ViT Document OCR 11M
ConvNeXt 384 200M 768 1024 CNN Image Classification 2B
SAM 1024 637M 1280 4096 ViT Image Segmentation 11M
MAE 224 630M 1280 256 ViT Patch-level Denoising 1.3M

Table 1: Comparison of six pre-trained visual experts. Res. indicates image resolution, d_hid
indicates hidden dimension and Param. indicates the number of parameters.

expert fusion network compresses the multi-channel visual information and aligns it multimodally to
the vision input tokens for MouSi. The user’s question is processed into text tokens by the LLMs’
Embedding layer. Finally, MouSi generates the correct answer “Male cones make pollen.” by
employing its VQA capabilities to understand the vision-language question, and its OCR capabilities
to recognize the answer text from the image.

In order to accomplish the above task, we propose MouSi, which consists of three fundamental
components:

1. a multi-expert visual encoder, which combines the experts selected from a pool;
2. a poly-expert fusion network, which is implemented as a simple projection fusion method or a

Q-Former fusion method [26];
3. a pre-trained open-source LLM (e.g., Vicuna v1.5).

Figure 2 shows an overview of the MouSi architecture. The core of a Vision-Language Model (VLM)
is typically an LLM which is pre-trained on large-scale textual corpus. In order to perceive the visual
signals, a vision encoder and vision-language connection layer are adopted to separately extract the
visual features and align them to the semantic space of LLM.

The VLM takes as input a sequence comprised of interleaved text and image segments, denoted as
X = (. . . , T1, I1, T2, I2, . . . ), where text fragments T are processed by the tokenizer and embedding
layer of the LLM, and image segments I are fed to the vision encoder. To ensure the universality and
generalizability of the vision encoder, it is common practice to freeze its pre-trained parameters. In
this paper, we rethink the design of the visual encoder in VLMs and aim to improve its capability by
ensembled experts.

2.2 Multi-Expert Vision Encoder

After extensive investigation, we choose six vision encoders skilled in different domains, including
CLIP [6], DINOv2 [13], LayoutLMv3 [14], Convnext [21], SAM [27], and MAE [17]. They differ
significantly from each other in terms of input resolution, hidden size, model type, model size,
pre-training tasks, and training methods, as shown in Table 1.

CLIP learns the image-text alignment through contrastive learning. It is pre-trained on a large-scale
dataset consisting of 400M noisy image-text pairs sourced from the internet. The vision encoder of
CLIP is a Vision Transformer (ViT) with 300M parameters. The input resolution is fixed to 336×336,
and the feature dimension is 1024.3

DINOv2 trains a student network to mimic the behavior of a more powerful teacher network,
without the need for any training labels. Two objective functions are utilized for self-supervised
pretraining: an image-level object that constrains the CLS tokens from the student network and
teacher network, and a patch-level object that is applied to the extracted representations of masked
input. The Dinov2 vision encoder is a Vision Transformer (ViT) with 1.1B parameters. The input
image is preprocessed to 224×224 resolution and the hidden dimension is 15364.

3https://huggingface.co/openai/clip-vit-large-patch14-336
4https://huggingface.co/facebook/dinov2-giant
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LayoutLMv3 pre-trains multimodal Transformers for Document AI with unified text and image
masking. The simple unified architecture and training objectives make LayoutLMv3 a general-
purpose model for both text-centric and image-centric Document AI tasks. The LayoutLMv3 vision
encoder is a ViT architecture with 368M parameters. The input image is first preprocessed to the
resolution of 224×224 and then encoded to 1024-dimension patch embeddings.5

Convnext is a purely convolutional network (ConvNet) that introduces a fully convolutional
masked autoencoder framework (FCMAE) and a new global response normalization (GRN) layer to
ConvNeXt. ConvNeXt underwent pretraining on the ImageNet-22K dataset, significantly enhancing
the performance of the pure ConvNet across various recognition benchmarks. The ConvNeXt vision
encoder we used has 200M parameters. The input resolution is 384×384 and the feature dimension
is 768.6

SAM is trained on a large-scale segmentation dataset, comprising 11 million images and over 1
billion masks, and achieves impressive zero-shot generalization. It is designed to efficiently predict
object masks from images with different types of prompts, e.g., text or point. SAM also adopts ViT as
a vision encoder with 637M parameters. The input resolution and hidden dimension are both larger,
i.e., 1024×1024 and 1280, respectively.7

MAE aims to reconstruct the original image given only partial observations (25% of the patches).
The ViT-Huge encoder paired with MAE achieved a new record at the time on the ImageNet-1K
dataset with an accuracy of 87.8% and generalized very well. The MAE vision encoder has 630M
parameters, while input resolution and hidden dimension are 1024×1024 and 1280.8

Given a image I in the input sequence and a vision expert encoder ei(·), we can obtain the represen-
tation vectors of n image patches:

vi
1,v

i
2, . . . ,v

i
n = ei(I). (1)

Assuming we have three experts (ei(·) ∈ Rni×di , ej(·) ∈ Rnj×dj , ek(·) ∈ Rnk×dk ), the final
sequence of image representations VI is a concatenation of the three output sequences.

VI = ei(I)⊕ ej(I)⊕ ek(I)

= [vi
1, . . . ,v

i
ni
,vj

1, . . . ,v
j
nj
,vk

1 , . . . ,v
k
nk
] (2)

It is worth noting that each expert outputs a different number (ni vs. nj vs. nk) and dimension (di vs.
dj vs. dk) of representations, and we will handle these differences in the poly-expert fusion network.
In addition, the order of the experts could also have an impact on the results, which we specifically
evaluate in the ablation experiments (Section 3.2.2).

2.3 Poly-Expert Fusion Network

Since the dimension and number of output sequences are often different for different visual experts, a
fusion network needs to be designed to unify the processing. Following LLaVA [7] and BLIP [28],
we propose an MLP projection fusion network and a Q-Former fusion network, respectively.

MLP projection is a 2-layer (din → dhidden → dout) multilayer perceptron network. To simplify
the processing and to share the knowledge among multiple experts, we set the hidden dimension
(dhidden) and the output dimension (dout) equal to the dimension (dmodel) of the LLM, and the
second layer network (MLP(2) : dhidden → dout) parameters are shared among all experts. Given a
specific expert ei(·), the first layer network is defined as MLP

(1)
i : di → dhidden.

VI = MLP(2)
(
MLP

(1)
i (ei(I))⊕MLP

(1)
j (ej(I))⊕MLP

(1)
k (ek(I))

)
(3)

In practice, multiple experts output a large number of vision tokens, which not only increases the
computational cost and memory usage of the VLM but also tends to exceed the maximum length

5https://huggingface.co/microsoft/layoutlmv3-large
6https://huggingface.co/laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup
7https://huggingface.co/facebook/sam-vit-huge
8https://huggingface.co/facebook/vit-mae-huge
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Figure 3: Examples of two types of multi-expert fusion networks. We show how the MLP method
compresses visual information with “2-patches-1-token”, and how the Q-Former method compresses
information with 3 trainable queries. The modules with color gradients represent the sharing of
parameters among multiple experts to transfer knowledge.

limit during inference. Therefore, we propose multi-patches-one-token projection to proportionally
reduce the number of tokens output by each expert. Since image signals have local or sparse
properties, it is reasonable to use one token to represent neighboring patches. Take m-patch-
one-token for example, we make the input dimension of the first layer of the network m times
(MLP(1) : din × m → dhidden), and its hidden layer output vectors hi

1,h
i
2, . . . are defined as

follows:

hi
1 = MLP(1)



vi
1

vi
2
...

vi
m


 , hi

2 = MLP(1)



vi
m+1

vi
m+2
...

vi
2m


 , . . . (4)

where the [
...] notation denotes concatenation over the vector dimension. The final number of vision

tokens is reduced to 1
m of the original. In practice, m is typically set from 2 to 8, which reduces cost

while usually not losing performance on downstream tasks. If m is set too large, the information of
the image might be lost.

Q-Former network is a trainable Querying Transformer module and proposed to bridge the gap
between a frozen image encoder and a pre-trained LLM. It extracts a fixed number of output features
from the vision encoder, independent of input image resolution. We create a set number of learnable
query embeddings as input to the Q-Former. The queries interact with each other through self-
attention layers, and interact with frozen image features ei(I) through cross-attention layers. The
output queries of the last layer are projected to the input layer of the LLM. We use the pre-trained
parameters in BLIP-2 as initialization to accelerate convergence and, similar to the second layer MLP
network, share the parameters among all experts. Since the dimension of query embeddings is equal
to 768, we add an additional linear transformation (Wi ∈ Rdi×768) for each expert.

VI = Q-Former (Wi (ei(I))⊕Wj (ej(I))⊕Wk (ek(I))) (5)

The ablation study in Section 3.2.1 shows that the MLP fusion network fuses better than the Q-Former
despite having fewer parameters and not being pre-trained.

2.4 Different Positional Encoding Schemes

Although the m-patch-one-token operation or defining a small number of queries in the Q-Former has
been able to reduce the proportion of vision tokens, the occupation of position embeddings by vision
tokens should not be underestimated during inference. Inspired by the fact that visual experts already
have positional encodings (e.g., 2D position encoding in ViT [29]), we believe it is redundant to again
assign a VLM position embedding to each visual token individually. As shown in Figure 4, this report
explores four positional encoding schemes for improving the assignment of position embeddings
(PEs):

6
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Figure 4: Diagram of the four positional encoding schemes. The ⊕ operator indicates that the row
position embedding and column position embedding are summed.

1. a separate position vector for each patch (original);
2. all vision tokens of an image share a PE (share-all);
3. one PE shared by the same row of vision tokens (share-by-row);
4. one PE shared by the same row of vision tokens, plus a set of learnable columns PEs (share-by-

row&col).

Among the four methods, share-all can reduce the original O(N2) PE cost to O(1), while the share-
by-row and share-by-row&col can reduce the PE cost to O(N). All of them can significantly alleviate
the out-of-maximum-length problem, but the question is how much do they affect the performance
of VLM? We report ablation results in Section 3.2.3.

3 Experiments

3.1 Main Results

The main focus of our experiments is to conduct explorations of single-expert, double-expert, and
triple-expert ensembles. Following LLaVA-1.5 [22], our training pipeline consists of two phases. In
phase 1, or the pre-training phase, we freeze the text-only LLM and the multi-expert encoder, and
train the poly-visual fusion network from scratch to align the representation space of both. After
training on a large-scale weakly-supervised (with noise) dataset, the text-only LLM is already capable
of multimodal input and comprehension. In phase 2, or the fine-tuning phase, we unfreeze the
LLM and further train it together with the poly-visual fusion network on diverse and high-quality
supervised fine-tuning (SFT) datasets. The construct of the datasets and the training configuration for
both stages are detailed as follows.

Datasets. During the pre-training phase, we utilized the LCS-558K dataset, which comprises
∼558K image-text pairs from the LAION-CC-SBU collection, annotated with BLIP-generated
captions. During the fine-tuning phase, we mixed 10 diverse and high-quality SFT datasets containing
VQA, OCR, region-level VQA, visual conversation, and language conversation data. To reduce
training costs and enhance efficiency, we adopted the same preprocessing strategy as LLaVA-1.5,
ultimately obtaining ∼665K SFT samples. All data splits are concatenated together and sampled
with the same probability. We selected 9 of the 12 evaluation benchmarks for LLaVA-1.5 (excluding
LLaVA-Bench that rely on unstable GPT4 responses, as well as VisWiz [30] and MME [31] for the
website crashed), including VQAv2 [32]; GQA [33]; SQAI : ScienceQA-IMG [34]; VQAT: TextVQA
[35]; POPE [20]; MMB & MMBCN: MMBench & MMBench-Chinese dev results [36]; SEEDI :
SEED-Bench-IMG [37]; MM-Vet [38]. Detailed statistical information can be found in Appendix A.

Hyperparameters. For main results, we keep all training hyperparameters roughly the same as
the LLaVA series [7, 22]. We present a detailed description of the hyperparameters in Appendix B.
For the MLP fusion network, we set m in m-patches-one-token from 1 to 16 to avoid exceeding the
maximum length for training and inference. For the Q-Former fusion network, we set the number of
queries per expert to match the number of outputs from the MLP fusion network. The parameters of
the Q-Former fusion network are initialized using the pre-training parameters of BLIP-2 [26].

7



Model Param. VQAv2 GQA SQAI VQAT POPE MMB MMBCN SEEDI MM-Vet Avg.

Single Expert
CLIP 7.3B 78.5 62.0 66.8 58.2 85.9 63.0 57.4 66.2 30.5 63.2
DINOv2 8.1B 74.9 61.7 66.1 46.2 84.6 57.9 48.7 63.4 23.4 58.5
LayoutLMv3 7.4B 44.9 40.0 62.8 43.6 59.1 29.0 19.8 34.8 11.8 38.4
ConvNeXt 7.2B 75.1 60.5 65.0 56.3 85.6 63.3 55.0 61.5 26.0 60.9
SAM 7.6B 64.7 55.8 63.9 44.1 82.0 43.7 33.9 51.9 17.7 50.9
MAE 7.6B 62.0 53.2 63.3 44.5 79.7 41.6 33.0 49.4 16.5 49.2

Table 2: Comparison of six vision experts on 9 benchmarks. Param indicates the number of
parameters.

3.1.1 Single Vision Expert

Table 2 compares the performance of all six VLMs with a single vision expert. The CLIP ex-
pert achieves the best performance in all 9 benchmarks, fully explaining why it has become
the dominant choice of vision encoder for VLMs. Comparing the different attributes of the ex-
perts, CLIP ranked 5th in terms of the number of parameters, 3rd in terms of resolution, and 2nd
above the size of the pre-training data, none of which had an absolute lead. Therefore, we guess
that its main advantage lies in its image-text matching pre-training task, which has multimodal
alignment capability in advance. Overall, the performance ranking of the six experts is roughly
CLIP>ConvNeXt>DINOv2>SAM>MAE>LayoutLMv3. In addition, LayoutLMv3 is an undis-
puted expert in OCR and SAM in image segmentation but performs poorly as a single visual encoder
in VLM. A natural question is whether multi-expert fusion can activate their capabilities in their
specialized fields?

3.1.2 Double Vision Experts

Model Param. VQAv2 GQA SQAI VQAT POPE MMB MMBCN SEEDI MM-Vet Avg.

Double Experts
DINOv2+CLIP 8.4B 79.0 63.1 69.8 57.7 86.4 67.0 60.5 66.9 32.0 64.7

∆DINOv2 4.1 1.5 3.7 11.5 1.8 9.1 11.8 3.5 8.6
∆CLIP 0.5 1.1 3.0 0.5 0.5 4.0 3.1 0.7 1.5

LayoutLMv3+CLIP 7.7B 79.2 62.4 68.5 58.9 86.1 67.0 59.9 66.8 33.0 64.6
∆LayoutLMv3 34.3 22.4 5.7 15.3 27.0 38.0 40.1 32.0 21.2
∆CLIP 0.7 0.4 1.7 0.7 0.2 4.0 2.5 0.6 2.5

ConvNeXt+CLIP 7.5B 78.7 61.9 69.9 57.8 86.1 65.5 59.2 66.1 32.1 64.1
∆ConvNeXt 3.6 1.4 4.9 1.5 0.5 2.2 4.2 4.6 6.1
∆CLIP 0.2 0.1 3.1 0.4 0.2 2.5 1.8 0.1 1.6

SAM+CLIP 7.9B 75.4 60.5 71.6 53.4 85.4 65.4 57.5 62.0 29.1 62.3
∆SAM 10.7 4.7 7.7 9.3 3.4 21.7 23.6 10.1 11.4
∆CLIP 3.1 1.5 4.8 4.8 0.5 2.4 0.1 4.2 1.4

Table 3: Performance comparison of different double-expert methods. The ∆-marked rows are
compared to the single-expert method. Where blue cells indicate the double-expert model is better,
and red cells indicate the single-expert model is better.

8



The current mainstream open-source VLMs have only one visual encoder, i.e., a single visual channel.
However, multimodal tasks are diverse, and different tasks require different visual signals. In this
subsection, we investigate whether dual-channel, i.e., double visual experts can outperform single
experts on various tasks. We combine the strongest CLIP expert with other experts to construct a
total of four double-expert combinations.

Table 3 shows the performance of the double-expert vision encoder on the nine benchmarks, and rela-
tive to each single expert belong them (a positive number indicates that the double expert outperforms
the single expert). The results show that the “DINOv2+CLIP” experts, “LayoutLMv3+CLIP” experts,
and “ConvNeXt+CLIP experts” three double-expert encoders outperform the arbitrary single encoder
in almost all cases (23/27). The results indicate that two visual channels do outperform a single visual
channel in terms of multimodal capabilities, demonstrating that multi-expert collaboration is feasible.
For the “SAM+CLIP” combination, the results are surprising, with the dual expert outperforming the
single expert in only 2/9 benchmarks, and lagging behind the single expert (specifically CLIP) in
the remaining 7 benchmarks. The main reason might be that SAM encodes much more signals than
CLIP (4096 patches vs. 576 patches), and fusion networks require a large information compression
ratio. The most efficient CLIP channel is also compressed at this point, leading to performance
decreases. There is a need to develop a more efficient visual information transfer network for experts
with massive patches such as SAM.

Comparing the performance between double-expert methods, we found that the best double-expert is
DINOv2+CLIP, rather than the ensemble of the best single expert and the second-best single expert,
ConvNeXt+CLIP. It indicates that superior performance as a single expert does not necessarily imply
optimality when ensembled. Since ConvNeXt and CLIP have considerable overlap in their training
methods and training corpora, leading to the extraction of similar visual information, whereas the
self-supervised DINOv2 and the weakly-supervised CLIP complement each other, resulting in a more
effective ensemble. Furthermore, it is worth mentioning that LayoutLMv3, which performed the
worst as a single expert, shows significant improvement when collaborating with CLIP, performing
the best on four benchmarks and ranking overall just behind DINOv2+CLIP. Even SAM, whose
information was compressed, achieved the highest performance on the ScienceQA-IMG benchmark.
Therefore, we can conclude that when paired with the versatile visual expert CLIP, other experts can
focus on capturing supplemental visual information to further enhance performance.

3.1.3 Triple Vision Experts

Model Param. VQAv2 GQA SQAI VQAT POPE MMB MMBCN SEEDI MM-Vet Avg.

Triple Experts
ConvNeXt+LayoutLMv3+CLIP 7.9B 78.5 63.3 70.2 58.0 87.3 66.8 58.9 66.0 32.2 64.6

∆ConvNeXt+CLIP 0.2 1.4 0.3 0.2 1.2 1.3 0.3 0.1 0.1
∆LayoutLMv3+CLIP 0.7 0.9 0.9 1.7 1.2 0.2 1.0 0.8 0.8

ConvNeXt+DINOv2+CLIP 8.6B 78.6 63.2 69.2 57.8 86.5 66.6 58.9 67.1 32.9 64.5
∆ConvNeXt+CLIP 0.1 1.3 0.7 0.0 0.4 1.1 0.3 1.0 0.8
∆DINOv2+CLIP 0.4 0.1 0.6 0.1 0.1 0.4 1.6 0.2 0.9

LayoutLMv3+DINOv2+CLIP 8.8B 79.1 63.6 69.0 58.4 86.5 67.4 60.0 67.5 33.6 65.0
∆LayoutLMv3+CLIP 0.1 1.2 0.5 0.5 0.4 0.4 0.1 0.7 0.6
∆DINOv2+CLIP 0.1 0.5 0.8 0.7 0.1 0.4 0.5 0.6 1.6

Table 4: Performance comparison of different triple-expert methods. The ∆-marked rows are
compared to the double-expert method. Where blue cells indicate the triple-expert model is better,
and red cells indicate the double-expert model is better.

Based on the double-expert encoder, we further construct the three-expert combinations. As shown in
Table 4, the three-expert approach wins in 4/6 cases in comparison with the two-expert at the data
size of LLaVA-1.5. The best-performing three-expert is LayoutLMv3+DINOv2+CLIP, followed
by ConvNeXt+LayoutLMv3+CLIP, and finally ConvNeXt+DINOv2+CLIP. Among them, model
LayoutLMv3+DINOv2+CLIP has the largest number of parameters, reaching 8.8 billion. We suspect
that the main reason limiting the performance of the triple-expert methods is the insufficient amount of
data. We train the MouSi on larger (1647K) augmented data and observe more significant performance
gains in Section 3.4.
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3.2 Ablation Study

3.2.1 Effect of Fusion Methods

Model Param. VQAv2 GQA SQAI VQAT POPE MMB MMBCN SEEDI MM-Vet

Effect of Fusion Methods
DINOv2+CLIP+MLP 8.4B 79.0 63.1 69.8 57.7 86.4 67.0 60.5 66.9 32.0
DINOv2+CLIP+Q-Former 8.5B 60.4 50.9 66.7 45.1 45.2 52.7 44.8 51.8 20.5

ConvNeXt+CLIP+MLP 7.5B 78.7 61.9 69.9 57.8 86.1 65.5 59.2 66.1 32.1
ConvNeXt+CLIP+Q-Former 7.6B 65.8 52.6 68.7 45.6 77.0 59.7 49.8 53.2 22.1

Table 5: Performance comparison of different poly-expert fusion methods.

The MLP projection and Q-Former network are two mainstream methods for connecting vision and
language. Which of them can more effectively convey visual signals is a key issue, especially in
the context of multi-expert fusion. Table 5 presents the performance of using MLP and Q-Former
respectively on three double-expert combinations, including “DINOv2 & CLIP” and “ConvNeXt &
CLIP”. The results demonstrate that MLP significantly outperforms Q-Former in all cases, despite
having fewer parameters and not utilizing pre-trained parameters like Q-Former, being instead directly
initialized randomly. It suggests that we should prefer a straightforward connection in the LLaVA
with poly-visual experts setup.

3.2.2 Effect of Expert Order

Model Param. VQAv2 GQA SQAI VQAT POPE MMB MMBCN SEEDI MM-Vet

Effect of the Order of Experts
DINOv2→CLIP 8.4B 79.0 63.1 69.8 57.7 86.4 67.0 60.5 66.9 32.0
CLIP→DINOv2 8.4B 79.6 63.9 69.2 59.1 86.4 67.5 59.4 67.0 31.8

ConvNeXt→CLIP 7.5B 78.7 61.9 69.9 57.8 86.1 65.5 59.2 66.1 32.1
CLIP→ConvNeXt 7.5B 78.0 61.9 68.7 57.4 86.9 66.0 58.1 65.4 30.6

Table 6: Performance comparison of different expert orders. We exchange the order of experts in
“DINOv2+CLIP”, and “ConvNext+CLIP”.

Due to the autoregressive and position-aware characteristics of LLMs, even if the visual experts are
exactly the same, a different order alone could affect the final output. Table 6 presents the effect of
swapping the order between double experts. The swap results of groups “DINOv2 & CLIP” and
“ConvNeXt & CLIP” indicate that order can cause some fluctuations in performance, with gains (7 of
22) on some benchmarks and losses (15 of 22) on others. In general, placing CLIP later brings about
better overall performance. Because CLIP is the most effective single expert and the expert placed
later is closer to the generation, we speculate that the latter-positioned expert has a slightly greater
effect on the response. This phenomenon is also consistent with the characteristics of binocular vision
organisms, such as humans, where one eye is the dominant eye and the other is the non-dominant eye.
The brain typically favors the input from the dominant eye when processing visual information [39].

3.2.3 Effect of Different Positional Encoding Schemes

Model VQAv2 GQA SQAI VQAT POPE MMB MMBCN SEEDI MM-Vet Avg.

Different Positional Encoding Schemes
Origin 78.5 62.0 66.8 58.2 85.9 64.3 58.3 66.2 30.5 63.4
Share-all 79.0 62.4 68.4 58.4 86.3 67.4 58.2 65.7 31.7 64.2
Share-by-row 75.0 57.2 63.4 51.7 86.1 46.4 43.4 55.6 31.9 56.7
Share-by-row&col 79.0 62.6 68.3 58.1 86.3 66.0 58.8 66.2 30.6 64.0

Table 7: Comparison of four positional encoding schemes on 9 benchmarks.
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Benchmark Text Prompt LayoutLMv3 DINOv2 CLIP

MMB 61.1% 0.14% 2.76% 11.1%
MMBCN 58.8% 0.16% 2.92% 10.7%

Table 8: Average attention probability (%) allocation of Mousi’s output on each visual expert. The
model used is a “LayoutLMv3+DINOv2+CLIP” triple-expert visual encoder.

The dog is sitting on top of a wooden table in the picture.

Q1: Where is the dog in the picture?

The dog is sitting on top of a table.

The dog is sitting on top of a wooden table in the picture.

A1: The dog is sitting on top of a wooden table in the picture.

A2: There are four dogs in the picture, and they are 
respectively golden yellow, white, brown, and black.

Q2: How many dogs are there 
in the picture? What color are 
they?

There are three dogs in the picture. They are brown and white.

There are three dogs in the picture. They are black and white.

Mask DINOv2!
Mask CLIP!
Mask LayoutLMv3!

Mask DINOv2!
Mask CLIP!
Mask LayoutLMv3!There are three dogs in the picture, and they are all brown.

Figure 5: The perturbation experiments on the triple-expert LayoutLMv3+DINOv2+CLIP model, the
specific perturbation is to mask all the output of the corresponding vision expert.

This subsection compares the four positional encoding schemes of VLMs introduced in Section 2.4.
Table 7 shows the results of the four approaches, where share-all not only saves the most PE but
also improves the average performance by 0.8 on top of CLIP. The 2D positional coding (share-
by-row&col) also improves the average performance by 0.6. However, share-by-row impairs the
performance of the model, probably because row sharing corrupts the position information of the
visual coder itself. The experimental results validate our conjecture that it is redundant to re-assign
LLM positional encoding to each vision token that already has positional information.

3.3 Analysis

Among multiple visual encoders, one question worthy of analysis is the contribution of different
experts to the model’s output. Attention mechanisms are commonly used interpretive tools in
Transformer networks. Here, we take a three-expert encoder as an example and analyze the average
contribution of each expert across two multilingual benchmarks, MMB-English and MMB-Chinese.
The contribution of one sample is the output token’s average attention to each expert’s representation.
Averaging over the entire dataset yields the overall average contribution.

Table 8 shows the individual contributions of the text prompt, LayoutLMv3, DINOv2, and CLIP to
the output. The results indicate that the contribution of the text prompt to the answer is significantly
higher than that of the visual experts. This is as expected. Firstly, the text prompt defines the format
of the VLM’s response, necessitating attention to the prompt during output, and secondly, the text
has a higher information density than images, hence the average attention is usually higher for
text. Comparing the three visual experts, we find that their contributions in descending order are
CLIP, DINOv2, and LayoutLMv3. CLIP still demonstrates the characteristics of being the dominant
eye or the primary visual channel. DINOv2’s contribution is approximately 20% of CLIP’s, while
LayoutLM’s contribution is minimal, at only 1% of CLIP’s.

A natural question that follows is, given the existence of visual channels with very low contributions,
is there a necessity for them to be part of the model? Figure 5 shows our perturbation experiments
on the triple-expert LayoutLMv3+DINOv2+CLIP model. The output tokens of the corresponding
expert are fully masked when generating answers, thus exploring the effect of the current expert on
the output. In Case 1, the user asks MouSi a simple question: “Where is the dog in the picture?”. No
matter which visual expert’s output signal is masked, the remaining two visual channels are sufficient
to correctly answer the location question “on top of”. More details are provided when CLIP experts
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are present, such as outputting “wooden table” instead of just “table”. In Case 2, the user asks MouSi
“How many dogs are there in the picture? What colors are they?” The perturbation results show that
only three experts working together can answer the question correctly. The absence of any one expert
results in an incorrect answer, which demonstrates the difference in the information captured by the
multiple visual channels of the poly-visual-expert VLM. Some multimodal tasks rely on the synergy
of multiple channels, which a single channel (i.e., a single expert VLM) does not have.

3.4 Data Enhancement

Model Param. VQAv2 GQA SQAI VQAT POPE MMB MMBCN SEEDI MM-Vet Avg.

Baselines
InstructBLIP[40] 8.0B – 49.2 60.5 50.1 – 36.0 23.7 53.4 26.2
Qwen-VL-Chat[24] 9.6B 78.2 57.5 68.2 61.5 – 60.6 56.7 58.2 –
BLIP-2[26] 14.1B 41.0 41.0 61.0 42.5 85.3 – – 46.4 22.4
Shikra[41] 7.3B 77.4 – – – – 58.8 – – –
PandaGPT[42] 13B – – – – – 45.4 32.0 47.6 19.6
mPLUG-Owl2[43] 8.2B – – – – – 66.5 59.5 64.5 35.7
Emu2-chat[44] 37B – – – – – 62.4 44.2 68.9 31.0

Default Data
CLIP (LLaVA-1.5[22]) 7.3B 78.5 62.0 66.8 58.2 85.9 64.3 58.3 66.2 30.5 63.1
ConvNeXt+LayoutLMv3+CLIP 7.9B 78.5 63.3 70.2 58.0 87.3 66.8 58.9 66.0 32.2 64.6

Data Enhancement
CLIP 7.3B 80.8 62.7 81.9 60.7 85.5 69.2 61.7 69.8 35.6 67.5
LayoutLMv3+ConvNeXt+CLIP 7.9B 80.9 62.6 84.3 61.3 86.3 68.8 63.7 70.1 38.4 68.5

Table 9: The effect of data enhancement on nine benchmarks. Param. indicates the number of
parameters.

After comprehensively exploring the architecture and effectiveness of the poly-visual-expert VLM,
we further augmented the data from LLaVA-1.5 to explore the upper limits of the performance of the
poly-visual-expert VLM.

Setting During the pre-training phase, we used 1.2 million pre-training data to replace the original
558K data in LLaVA-1.5. Where 100K data were generated by GPT4v, and the remaining data
were produced by a supervised trained image captioner, which included the 558K images but with
higher quality captions. During the SFT phase, we expanded the 665K SFT data to 1647K. Detailed
statistical information can be found in Appendix A. For data enhancement results, we keep all training
hyperparameters roughly the same as the main results. Besides the number of iterations varies with
the increase of data size.

Table 9 reports the results for LLaVA-1.5 (i.e., single CLIP expert), LLaVA-1.5 after data enhance-
ment, and MouSi (with triple-expert “LayoutLM+ConvNeXt+CLIP”) after data enhancement on
nine benchmarks. The results show that with data enhancement, the poly-visual expert VLM can
further improve performance (7/9) compared with single-expert VLM. The average performance
improved by 1.0, yet the number of parameters increased by only 300M. Comparing the effects of
data augmentation, we observe that the single-expert approach improved by 4.4, and the triple-expert
method improved by 3.9. This confirms that the potential of poly-visual-expert VLMs has not yet
been fully tapped and that more data can significantly enhance the capabilities of VLMs. Finally,
compared to mainstream VLMs, MouSi performs the best in 8 out of 9 benchmarks while exhibit-
ing the second-best performance in the remaining one, demonstrating strong multimodal assistant
capabilities.

4 Case Study

Figure 6 shows the case study of MouSi on seven tasks, including Complex Image Captioning,
Visual Text Generating, OCR Interpreting Reasoning with World Knowledge, Visual Math Problem
Solving, Complex Counting, and Visual Grounding. MouSi is able to successfully follow a variety of
multimodal instructions, allowing for flexible interaction with humans.
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Figure 6: Qualitative examples generated by Mousi.

5 Related Work

Vision-Language Models (VLMs) represent the confluence of linguistic and visual processing,
and they have shown promising results in various applications. Early models such as VisualGPT [45]
provided foundational work in image captioning, while the BLIP series [28, 26] extended capabilities
to include visual question answering. Flamingo [46] and Kosmos-1 [47] demonstrated effective
multi-modal understanding within image-text frameworks. LLaMA adaptations like LLaVA [7] and
MiniGPT-4 [48] utilize projection layers for connecting vision encoders and LLMs. CoGVLM [23]
replicated close to double the parameters to build visual experts specializing in visual tokens, while
similar to our exploration of positional encoding, they used share-by-one rather than the original
approach. Qwen-VL and BLIP series [24, 25] use the Q-Former network to bridge text and image.

Visual Encoding Experts The success of vision language models pivots upon adept visual encod-
ing; hence, a curated selection of vision encoders, each with its own domain expertise, is crucial
for holistic visual understanding. The CLIP model by [6] employs contrastive learning to align
images and text, effectively facilitating semantic image understanding. Dinov2 [13] from Meta
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advances self-supervised learning through a student-teacher network paradigm, developing spatial
understanding with a robust ViT framework. Microsoft’s LayoutLMv3 [14], on the other hand,
presents a multimodal Transformer adept in document AI by bolstering word-patch alignment in
a ViT model. Convnext [21] reintroduces the efficacy of ConvNets with its FCMAE framework
and GRN layer, finetuned with ImageNet-22K data. The Segment Anything Model (SAM) by [27]
showcases exceptional segmentation prowess, trained on a vast dataset to champion zero-shot gener-
alization in its ViT infrastructure. The MAE [17] demonstrated remarkable denoising self-supervised
capabilities, reconstructing images with a high degree of fidelity. Yet these encoders, notably CLIP,
possess limitations as evidenced by [19] highlighted its struggles with spatial orientation and [20]’s
findings on object hallucination. Moreover, [15] recognized a division of competencies, noting
more semantics in fully/weakly supervised encoders like CLIP, while others excel in fine-grained
perception.

Multi-Modal Large Language Models (MLLMs) have been evolving rapidly, with models like
ImageBind-LLM [49] and PandaGPT [42] incorporating richer modality inputs, including audio and
video. There is also a growing focus on region-level parsing [41], text-to-image generation [50],
and 3D understanding [51]. These models show that MLLMs can achieve meaningful performance
across a range of tasks. MouSi, as a poly-visual-expert VLM, is easily adapted to multi-modal-expert
models, which will be our future work.

6 Conclusion

In this paper, we push the boundaries of vision-language models (VLMs) by proposing a novel
polyvisual system that closely mirrors the complex and multi-dimensional nature of biological
visual processing. Leveraging the unique attributes of diverse visual encoders, our system unifies
their strengths to enrich the multimodal understanding of VLMs. Furthermore, we address the
challenge of efficiently integrating visual information into language models by introducing techniques
such as multi-patch-single-token projection and optimizing positional embeddings. This not only
allows us to manage the overflow of vision tokens that typically burdens VLMs but also retains
the models’ semantic and spatial reasoning capabilities. Through rigorous experiments across a
suite of benchmarks, we demonstrate that our polyvisual approach significantly enhances the VLMs’
performance, outpacing existing models in accuracy and depth of understanding. These results
support our hypothesis that a well-integrated assembly of expert encoders can lead to a substantial
improvement in handling complex multimodal inputs.
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A Datasets

During the pretrain phase, we employed the identical LCS-558K dataset as utilized in LLaVA-1.5,
sourced from LAION-CC-SBU. For data-enhanced datasets, we incorporated the pre-trained dataset
from ShareGPT4V [52], distinguished by its longer textual descriptions.

In the subsequent finetune phase, we utilized the same instruction-based fine-tuning data as LLaVA-
1.5 for the default dataset, comprising approximately 665K samples. For datasets with enhanced
data, we introduced supplementary data during the finetune stage, drawing from sources such as
ShareGPT4V, LVIS-INSTRUCT4V [53], and CogVLIM-SFT-311K-CN [23].

The specifics of our pretrain and finetune datasets are detailed in Table 10.

Default pretrain data Size Enhanced pretrain data Size

LCS-558K 558K ShareGPT4V 1200K

Default finetune data Size Enhanced finetune data Size

LLaVA 158K ShareGPT4V-cap100k 100K
ShareGPT 40K ShareGPT4V-mix-665k 665K
VQAv2 83K LVIS-INSTRUCT4V-220k 220K
GQA 72K CogVLM-SFT-311K-CN 150K
OCRVQA 80K VG 86K
A-OKVQA 50K OCRVQA 80K
TextCaps 22K GQA 72K
RefCOCO 30K VQAv2 60K
VG 86K docvqa 44K
OKVQA 9K stvqa 30K

fmiqa 23K
textvqa 21K
coco-cn 20K
ScienceQA 10K
flickr8k-cn 8K
chinese-food 1K

Total 665K Total 1647K

Table 10: Default data and Enhanced data for the Pretrain and Finetune phases of our model.

B Hyperparameters

We use the same set of hyperparameters as the original LLaVA-1.5. The training hyperparameters for
visual language alignment pre-training and visual instruction tuning are shown in Table 11.

Hyperparameter Pretrain Finetune

batch size 256 128
lr 1e-3 2e-5
lr schedule cosine decay
lr warmup ratio 0.03
weight decay 0
epoch 1
optimizer AdamW
DeepSpeed stage 2 3

Table 11: Hyperparameters of our model’s pretrain and finetune.
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C More Case Studies

Figure 7: Qualitative Chinese examples generated by Mousi.
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Figure 8: Qualitative Chinese examples generated by Mousi.
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Figure 9: Qualitative Chinese examples generated by Mousi.
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Figure 10: Qualitative Chinese examples generated by Mousi.
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Figure 11: Qualitative Chinese examples generated by Mousi.
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Figure 12: Qualitative Chinese examples generated by Mousi.
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